Skip Navigation
Skip to contents

KMJ : Kosin Medical Journal

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse articles > Author index
Search
Suk Woo Lee 1 Article
Effects of Changes in Inspiratory Time on Inspiratory Flowrate and Airway Pressure during Cardiopulmonary Resuscitation: A Manikin-Based Study
Jung Ju Lee, Su Yeong Pyo, Ji Han Lee, Gwan Jin Park, Sang Chul Kim, Hoon Kim, Suk Woo Lee, Young Min Kim, Hyun Seok Chai
Kosin Med J. 2021;36(2):100-108.   Published online December 31, 2021
DOI: https://doi.org/10.7180/kmj.2021.36.2.100
  • 1,882 View
  • 29 Download
Abstract PDFPubReader   ePub   
Objectives

Given that cardiopulmonary resuscitation (CPR) is an aerosol-generating procedure, it is necessary to use a mechanical ventilator and reduce the number of providers involved in resuscitation for in-hospital cardiac arrest in coronavirus disease (COVID-19) patients or suspected COVID-19 patients. However, no study assessed the effect of changes in inspiratory time on flowrate and airway pressure during CPR. We herein aimed to determine changes in these parameters during CPR and identify appropriate ventilator management for adults during CPR.

Methods

We measured changes in tidal volume (Vt), peak inspiratory flow rate (PIFR), peak airway pressure (Ppeak), mean airway pressure (Pmean) according to changes in inspiratory time (0.75 s, 1.0 s and 1.5 s) with or without CPR. Vt of 500 mL was supplied (flowrate: 10 times/min) using a mechanical ventilator. Chest compressions were maintained at constant compression depth (53 ± 2 mm) and speed (102 ± 2/min) using a mechanical chest compression device.

Results

Median levels of respiratory physiological parameters during CPR were significantly different according to the inspiratory time (0.75 s vs. 1.5 s): PIFR (80.8 [73.3 – 87.325] vs. 70.5 [67 – 72.4] L/min, P < 0.001), Ppeak (54 [48 – 59] vs. 47 [45 – 49] cmH2O, P < 0.001), and Pmean (3.9 [3.6 – 4.1] vs. 5.7 [5.6 – 5.8] cmH2O, P < 0.001).

Conclusions

Changes in PIFR, Ppeak, and Pmean were associated with inspiratory time. PIFR and Ppeak values tended to decrease with increase in inspiratory time, while Pmean showed a contrasting trend. Increased inspiratory time in low-compliance cardiac arrest patients will help in reducing lung injury during adult CPR.


KMJ : Kosin Medical Journal